 Field Note:

179��

Distribute freely��

Subject:	Developing applications using MMIO

Date Created:	�date \@ "MMMM dd, yyyy"�May 30, 1996�

Product:	MPEG Player

Version 1.1 and above of MPEG Player includes support for the Windows mmio (Multi-Media Input Output) file routines as an alternative to standard file I/O while running in 16-bit environments. Specifically, the driver may use the following mmio functions if so enabled via a switch in VDI.INI:

	mmioOpen

	mmioClose

	mmioRead

	mmioSeek

Use of these functions is enabled by the following switch in the [MPEG Player Tuning] section of VDI.INI:

	[MPEG Player Tuning]

	UseMMIO=1

With this feature enabled the normal operation of MPEG Player (e.g. under Media Player or any “normal” application) should be unaffected. It is possible that performance may even be slightly improved - the mmio routines are supposed to be more efficient than the standard variety.

However, a more interesting aspect of using mmio is that it allows the use of custom I/O procedures which can do almost anything the developer wishes. An example of this could be decryption of encrypted data.

When the mmio feature is enabled and an application issues an MCI command such as

OPEN C:\MPEG\CLIP.XYZ+SOMETHING TYPE MPEGVIDEO ALIAS ABC

the occurrence of the “+” in the filename causes Windows to look for an installed custom I/O procedure which has registered itself to handle files with the specified extension (ie. “XYZ” in the example MCI command given). If such a custom handler exists then Windows calls the custom I/O procedure to handle the I/O operation. Within the sensible constraints of the function requested (ie. an “open” request should probably open a file amongst other possible things, a “read” request should return some data to the caller etc.) the custom I/O procedure can do whatever it likes.

The Win 3.1 SDK Multimedia Programmer’s Guide and Multimedia Programmer’s Reference provide descriptions of the mmio functions.

The code sample below shows a simple custom I/O procedure which handles files of the form <filename>.XYZ+<something>. Upon receipt of an MMIOM_OPEN message the handler opens the file <filename>.XYZ and looks for “DECODE” in the <something> part. If “DECODE” is specified, eg if the MCI command was

OPEN C:\MPEG\ENCODED.XYZ+DECODE TYPE MPEGVIDEO ALIAS ABC

then all data bytes read from the file are incremented by 1 before being returned to the caller; if the file ENCODED.XYZ had been previously encoded by subtracting 1 from every byte in the file then it would play back correctly.

EXAMPLE

This is sample code only, it is the responsibility of developers to produce valid programs.

void InstallMPEGHandler(HANDLE hInstance)

{

	LPMMIOPROC	lpMpegIoProc;

	LPMMIOPROC	lpTemp;

	lpMpegIoProc = (LPMMIOPROC)MpegIoProc;

	lpTemp = mmioInstallIOProc(mmioFOURCC('X', 'Y', 'Z', ' '),

						lpMpegIoProc,

						MMIO_INSTALLPROC | MMIO_GLOBALPROC);

}

void DeinstallMPEGHandler(HANDLE hInstance)

{

	mmioInstallIOProc(mmioFOURCC('X', 'Y', 'Z', ' '),

				NULL, MMIO_REMOVEPROC);

}

LRESULT _loadds FAR PASCAL MpegIoProc(LPMMIOINFO lpmmioinfo, 								UINT wMsg,

								LPARAM lParam1, 									LPARAM lParam2)

{

	LRESULT 	lRet;

	LPBYTE	lpBuf;

	UINT		uiBufLen;

	LONG		lOffset;

	int		nOrigin;

	HFILE		hFile;

	LPCSTR	lpcFileName;

	char		szBaseFileName[80];

	size_t	nPlusIndex;

	DWORD		dwDecodeRequired;

	switch (wMsg)

	{

		case MMIOM_OPEN:

		{

			lpcFileName = (LPCSTR)lParam1;

			/* Extract file name up to "+" */

			nPlusIndex = _fstrcspn(lpcFileName, "+");

			_fstrncpy(szBaseFileName, lpcFileName,

					nPlusIndex + 1);

			szBaseFileName[nPlusIndex] = 0;

			if (fstrstr(fstrupr(lpcFileName), "DECODE") != NULL)

			{

				dwDecodeRequired = (DWORD)TRUE;

			}

			else

			{

				dwDecodeRequired = (DWORD)FALSE;

			}

			hFile = _lopen(szBaseFileName, READ);

			lpmmioinfo->lDiskOffset = 0;

			lpmmioinfo->adwInfo[0] = (DWORD)hFile;

			lpmmioinfo->adwInfo[1] = dwDecodeRequired;

			lRet = 0;

			break;

		}

		case MMIOM_CLOSE:

		{

			hFile = (int)(lpmmioinfo->adwInfo[0]);

			_lclose(hFile);

			lpmmioinfo->lDiskOffset = 0;

			lpmmioinfo->adwInfo[0] = HFILE_ERROR;

			lRet = 0;

			break;

		}

		case MMIOM_READ:

		{

			lpBuf = (LPBYTE)lParam1;

			uiBufLen = (UINT)lParam2;

			hFile = (int)(lpmmioinfo->adwInfo[0]);

			lRet = (LRESULT)(_lread(hFile, lpBuf, uiBufLen));

			lpmmioinfo->lDiskOffset += (LONG)lRet;

			dwDecodeRequired = lpmmioinfo->adwInfo[1];

			if (dwDecodeRequired)

			{

				DecodeBuffer(lpBuf, (UINT)lRet);

			}

			break;

		}

		case MMIOM_SEEK:

		{

			lOffset = (LONG)lParam1;

			nOrigin = (int)lParam2;

			hFile = (int)(lpmmioinfo->adwInfo[0]);

			lRet = (LRESULT)(_llseek(hFile, lOffset, nOrigin));

			lpmmioinfo->lDiskOffset = (LONG)lRet;

			break;

		}

		case MMIOM_WRITE:

		{

			break;

		}

		case MMIOM_WRITEFLUSH:

		{

			break;

		}

		case MMIOM_RENAME:

		{

			break;

		}

		default:

		{

			break;

		}

	}

	return (lRet);

}

void DecodeBuffer(LPBYTE lpBuf, UINT uiLength)

{

	UINT		i;

	LPBYTE	lpB;

	BYTE		ucTemp;

	lpB = lpBuf;

	for (i = 0; i < uiLength; i++)

	{

		ucTemp = *lpB;

		ucTemp++;

		*lpB = ucTemp;

		lpB++;

	}

}

Mark Hargreaves

�date \@ "MMMM, yy"�May, 96�

Field Note 179 revision 2		page �page �4� of �numpages �4�

